
objekte
v e r i f i k a t i o n v o n u m l - m o d e l l e n

v o n m a r t i n r ö s c h

VERIFIKATION VON UML-
MODELLEN: MOTIVATION,
GRUNDLAGEN UND VERFAHREN

wicklung zu einem interessanten Thema
werden, wobei die Norm den dritten
Punkt als „Verifikation” bezeichnet und
eine nicht erfüllte Anforderung als
„Fehler”.
Zusätzlich gibt es noch drei weitere
Begriffe, die oft im Zusammenhang mit
Verifikation genannt werden und die lei-
der geeignet sind, Verwirrung zu stiften,
da ihre umgangssprachliche Bedeutung
nur teilweise mit ihren ISO-9000-
Definitionen übereinstimmt: Fehlerfreiheit
(Kasten 2), Validierung (Kasten 3) und
Kundenzufriedenheit (Kasten 4). Damit
sind die Grundlagen für die Verifikation
von UML-Modellen schon beisammen.
Mehr ist nicht erforderlich. Fangen wir
also an.

Anwendungsbeispiel
Als Anwendungsbeispiel soll uns eine sehr
einfache Auftragsverwaltung dienen. In
ihr gibt es Kunden mit Name und Kredit-
limit sowie Aufträge mit Beschreibung,

Größere Softwareprojekte werden heute zunehmend auf einem Fundament aus UML
gebaut. Doch wie fest ist dieses Fundament? Wie können Softwareentwickler sicherstel-
len, dass ihre UML-Modelle richtig sind? Und wie können sie bei späteren Änderungen
das Einschleichen versehentlicher Fehler verhindern? Der Artikel beschreibt die Verifika-
tion von UML-Modellen anhand eines Verfahrens, das sich seit einigen Jahren in der
Praxis bewährt hat.

m e h r z u m t h e m a :
www.sustainablecomputing.org
www.generalobjects.com/begriffe/uml

34 35

Martin Rösch (E-Mail:
martin.roesch@generalobjects.com) ist
Managing Director von General
Objects LTD und Leiter der Object
Academy. Sein besonderes Interesse gilt
dem bewussten Umgang mit menschli-
chem Wissen und dessen gesicherter
Behandlung im Entwicklungsprozess
von Softwaresystemen.

der autor

2) Wir müssen die tatsächlichen Eigen-
schaften des Produkts feststellen kön-
nen (messen).

3) Wir müssen die erwarteten mit den
tatsächlichen Eigenschaften verglei-
chen können (vergleichen).

Genau dasselbe – nur etwas formaler –
definiert die Norm ISO 9000 (vgl. [ISO])
als den Kern von Qualität (Kasten 1).

Für das Qualitätsmanagement in der
Softwareentwicklung ergeben sich hieraus
einige Denkanstöße:

1) Erst durch Anforderungen wird Qua-
lität definiert.

2) Erst durch die Verifikation wird Qua-
lität messbar.

3) Was man nicht messen kann, das kann
man auch nicht managen.

Die Verifikation von UML-Modellen
könnte aus diesem Grund auch für das
Qualitätsmanagement in der Softwareent-

Die UML ist inzwischen erwachsen und
eine professionelle Softwareentwicklung
ohne sie ist kaum noch vorstellbar. Als
weltweit standardisierte und von vielen
Tools unterstützte Planungssprache für
Informationssysteme hat die UML des-
halb einen festen Platz im Entwick-
lungsprozess von modernen Software-
projekten.

So ist es nur natürlich, dass immer mehr
UML-Modelle entstehen und dass sie
einen immer größeren und wichtigeren
Teil der Projektergebnisse bilden. Um so
wichtiger wird daher die Frage nach ihrer
Richtigkeit. Doch was ist hier „richtig”?

Salopp gesprochen ist ein Produkt rich-
tig, wenn es macht, was es soll. Dieser ein-
fache Satz zeigt uns schon die ersten drei
Voraussetzungen für das Feststellen der
Richtigkeit von UML-Modellen:

1) Wir müssen Erwartungen bzw. An-
forderungen das Produkt haben (be-
schreiben).

www.objektspektrum.de

■ Verifikation: Bestätigung durch Bereitstellung eines objektiven Nachweises, dass festgelegte Anforderungen erfüllt worden sind.
■ Objektiver Nachweis: Daten, die die Existenz oder Wahrheit von Etwas bestätigen.
■ Anforderung: Erfordernis oder Erwartung, das oder die festgelegt, üblicherweise vorausgesetzt oder verpflichtend ist.
■ Festgelegte Anforderung: Eine festgelegte Anforderung ist eine Anforderung, die beispielweise in einem Dokument angegeben

ist.
■ Dokument: Information und ihr Trägermedium.
■ Information: Daten mit Bedeutung.
■ Konformität: Erfüllung einer Anforderung.
■ Fehler: Nichterfüllung einer Anforderung.

Kasten 1: Definitionen aus ISO 9000:2000 zur Verifikation

freies Kreditlimit identisch mit seinem
eingetragenen Kreditlimit.

Hierzu wurde das in Abbildung 1 gezeigte
UML-Modell erstellt, mit dem wir jetzt
eine Beschreibung der späteren Software
vorliegen haben. Doch wie können wir
messen, ob es alle gestellten Anfor-
derungen erfüllt? Hier kommt uns die ISO
9000 zur Hilfe, denn sie verlangt, dass die
Erfüllung der Anforderungen „objektiv
nachgewiesen” werden muss, z. B. durch
Tests. Dies geht natürlich am besten, wenn
man sich von Vornherein darauf einigt,
wie die Erfüllung der Anforderungen
getestet werden soll. Das erspart langwie-
rige Missverständnis-Diskussionen im
Nachhinein.

Verifikation &
Kundenzufriedenheit

Zusätzlich zu Verifikation und Vali-
dierung, die beide durch Messungen und
„objektive Nachweise” bestätigt wer-
den, führt ISO 9000 den Begriff der
Kundenzufriedenheit ein, als „Wahrneh-
mung des Kunden zu dem Grad, in dem

die Anforderungen des Kunden erfüllt
sind”. Sie wird rein subjektiv ermittelt.
Deshalb erläutert die ISO 9000 in einer
Anmerkung zu dieser Definition:
„Selbst, wenn Kundenanforderungen
mit dem Kunden vereinbart und erfüllt
worden sind, bedeutet dies nicht not-
wendigerweise, dass die Kundenzufrie-
denheit damit sichergestellt ist” ([ISO],
S. 19).
Umgekehrt kann ein Produkt auch dann
hohe Werte bei der Kundenzufriedenheit
erreichen, wenn es weder verifiziert
noch validiert ist. Viele populäre
Programme belegen dies.

Kasten 4

www.s igs-datacom.de4/2003

objekte
v e r i f i k a t i o n v o n u m l - m o d e l l e n

Wert und Bezahlt-Status. Nehmen wir fer-
ner an, dass die Anforderungssteller fol-
gende Anforderungen haben:

1) Das System soll Kunden und Aufträge
verwalten können. Ein Kunde kann 0
bis n Aufträge haben und jeder Auftrag
soll zu genau einem Kunden gehören.

2) Für jeden Kunden sollen sein Name
sowie sein Kreditlimit gespeichert wer-
den.

3) Für jeden Auftrag sollen folgende
Angaben gespeichert werden: seine
Beschreibung, sein Wert und die Tat-
sache, ob er bereits bezahlt ist.

4) Das Kreditlimit eines Kunden be-
schränkt den Umfang seiner unbezahl-
ten Aufträge. Neue Aufträge müssen
in das freie Kreditlimit eines Kunden
passen. Dies wird nur bei der Annah-
me neuer Aufträge geprüft.

5) Eine Verringerung des Kreditlimits hat
keine Auswirkungen auf bestehende
Aufträge.

6) Das freie Kreditlimit eines Kunden
verringert sich bei jeder Erteilung eines
Auftrags. Bei der Bezahlung eines Auf-
trags erhöht es sich wieder.

7) Wenn ein Kunde keine bzw. keine
unbezahlten Aufträge hat, ist sein

Verifikation & Fehlerfreiheit

Nach den Buchstaben der deutschen Version der ISO 9000 könnte man ein verifizier-
tes UML-Modell eigentlich getrost und ohne rot zu werden als „fehlerfrei” bezeichnen,
doch damit habe ich in der Vergangenheit schlechte Erfahrungen gemacht: Zu heftig
sind die Emotionen, die an diesem Wörtchen hängen. Dabei ist Fehlerfreiheit gerade
bei Software ein hochinteressantes Thema, zu dem es viel zu sagen gäbe. Doch das
würde den Rahmen dieses Artikel sprengen.
Außerdem sind sowohl die englische als auch die französische Version des
Normentextes deutlich vorsichtiger und nennen eine nicht erfüllte Anforderung ledig-
lich eine „nonconformity” bzw. eine „non-conformité”.
Doch bevor wir beginnen, mit Wort-Ungetümen wie „Nichtkonformität” (für Fehler)
oder „nicht unkonform” (für fehlerfrei) zu hantieren, bleibe ich lieber bei „verifiziert”
– da weiß man, was man hat, und es regt sich auch niemand darüber auf.

Kasten 2

Verifikation & Validierung
Eine Validierung prüft das, was der Volksmund als „Qualität” bezeichnet.
Sie unterscheidet sich von der Verifikation in zwei wichtigen Punkten: Zum einen
muss ein Produkt für eine Validierung auch „üblicherweise vorausgesetzte”
Anforderungen erfüllen, ohne dass diese schriftlich festgelegt sein müssten. Zum ande-
ren muss es auch „für einen beabsichtigten Gebrauch geeignet” sein. Sogar nicht
genannte und daher auch gar nicht
erfüllbare Erwartungen reichen
also aus, um bei der Validierung
einen Mangel (Defect) zu konsta-
tieren.
Deshalb warnt die Norm ganz aus-
drücklich (und zum Teil sogar fett
gedruckt) vor dem Begriff
„Mangel” und damit indirekt auch
vor der Validierung: „Die
Unterscheidung zwischen den
Benennungen Mangel und Fehler
ist wegen ihrer rechtlichen
Bedeutung, insbesondere in Fragen
der Produkthaftung, wichtig. Die Benennung „Mangel” sollte daher mit äußerster
Vorsicht verwendet werden” (O-Ton ISO 9000, Seite 26).

Kasten 3

Verifikation

Validierung

Verifikation

Kundenzufriedenheit

Validierung

objekte
v e r i f i k a t i o n v o n u m l - m o d e l l e n

36 37 www.objektspektrum.de

In dem Verfahren, das wir bisher zur
Verifikation von UML-Modellen benutzt
haben1), hat jede Anforderung ihre eige-
nen Tests (meist zwischen drei und fünf);
sie gilt als erfüllt, wenn sie alle ihre verein-
barten Tests bestanden hat.

Diese direkte und unmittelbare Zuord-
nung von Anforderungen und Tests geht
über das hinaus, was ISO 9000 fordert,
doch die Erfahrung hat gezeigt, dass sie
die Handhabbarkeit der Anforderungs-
sammlung deutlich verbessert – besonders
dann, wenn Anforderungen geändert wer-
den müssen. Dann helfen die zu einer
Anforderung gehörenden Tests, sie schnel-
ler und sicherer zu verstehen. Und wenn
eine Anforderung geändert oder entfernt
werden muss, grenzt diese Zuordnung die
Menge der potenziell betroffenen Tests
sehr wirksam ein.

Für die folgenden Beispiele wählen wir
die Anforderung 4, die in Kasten 5 zusam-
men mit ihren Tests gezeigt wird.

In Trainings vermitteln wir die Verifi-
kation von Mini-UML-Modellen durch
Rollenspiele: Beim Nachspielen von Ob-
jekt-Interaktionen wie den in Kasten 5
genannten Tests 4a bis 4c lernen Men-
schen sehr schnell, warum und wie die
Verifikation funktioniert. Doch für den
Praxis-Einsatz ist dieses nicht-automati-
sierte Verfahren natürlich zu langsam und
daher letztlich nicht bezahlbar.

Praxistauglich wird die Verifikation von
UML-Modellen deshalb erst durch ihre
vollständige Automatisierung, wenn nach
jeder Änderung an den Anforderungen
oder am Modell eine erneute und zuver-
lässige Verifikationsaussage schon nach
wenigen Minuten vorliegen kann.

Für die Automatisierung benötigen wir
sowohl das UML-Modell als auch die
Tests als ausführbaren Programmcode.
Für die Beispiele in diesem Artikel wurde
als Programmiersprache Java gewählt2).
Eine einfache Codierung für das Modell
zeigt der Codeausschnitt in Listing 1.

Wie man sieht, wurden die Angaben des
UML-Modells gradlinig in Java umgesetzt.
Dieser Vorgang kann z. B. mit Hilfe der
Skriptsprachen der gängigen UML-Tools
leicht automatisiert werden. Als nächstes
müssen die Tests codiert werden. Das
Java-Programm in Listing 2 zeigt den
Code für den Normalfall-Test4). Wenn
man das Programm laufen lässt, erscheint
nur eine kleine unscheinbare Anzeige:

Test_4a ok

Interessanter werden die Ausgaben erst,
wenn wir absichtlich (oder unfreiwillig)
ins Modell oder in die Tests Fehler einbau-
en. Dann bekommen wir auch Ausgaben
wie z. B. die folgende zu sehen:

Anforderung 4 mit Tests

Das Kreditlimit eines Kunden be-

schränkt den Umfang seiner unbezahl-

ten Aufträge. Neue Aufträge müssen in

das freie Kreditlimit eines Kunden pas-

sen. Dies wird nur bei der Annahme

neuer Aufträge geprüft.

■ a. (Normal): Kunde Meier hat ein

Kreditlimit von 500 Euro und zwei

offene Aufträge a1 und a2 von 100

und 150 Euro. Ein dritter Auftrag

von 200 Euro kann noch angenom-

men werden. Danach hat Kunde

Meier drei Aufträge und einen freien

Kreditrahmen von 50 Euro.

■ b. (Grenzfall positiv): Kunde Meier

hat ein Kreditlimit von 450 Euro

und zwei offene Aufträge a1 und a2

von 100 und 150 Euro. Ein dritter

Auftrag von 200 Euro kann (gerade

noch) angenommen werden. Danach

hat Kunde Meier drei Aufträge und

einen freien Kreditrahmen von 0

Euro.

■ c. (Grenzfall negativ): Kunde Meier

hat ein Kreditlimit von 449 Euro

und zwei offene Aufträge a1 und a2

von 100 und 150 Euro. Ein dritter

Auftrag von 200 Euro kann nicht

mehr angenommen werden. Dies

wird durch eine Fehlermeldung sig-

nalisiert. Danach hat Kunde Meier

zwei Aufträge und einen freien

Kreditrahmen von 199 Euro.

Kasten 5

Abb. 1: UML-Modell für das Kunde-Auftrag-Beispiel

Einen Auftrag zuordnen: Ein Auftrag kann einem Kunden zugeordnet werden, wenn der Auftragswert nicht größer ist als das freie
Kreditlimit des Kunden.
Freies Kreditlimit ermitteln: Vom Kreditlimit des Kunden werden die Werte aller seiner bislang unbezahlten Aufträge subtrahiert.
Das Ergebnis ist das freie Kreditlimit.

2) In Projekten wurden bisher Smalltalk, Java, C++
und COBOL (mit CORBA-Schnittstellen) verwen-
det

4) Die Oberklasse „Test.java” sowie der vollständige
Quellcode der Beispiele aus diesem Artikel können
von www.generalobjects.com/downloads/OBJEKT
spektrum herunter geladen werden.

1) Objects 9000 ist ein Verfahren für die Verifika-
tion von UML-Modellen. Es ist selbst auch nach
ISO 9000 zertifiziert.

Als nächstes verknüpfen wir die An-
forderung 4 mit ihren Tests, damit diese
nicht mehr einzeln gestartet werden müs-
sen (siehe Listing 3). Die Ausgabe des
Programms ist auch wieder wenig spekta-
kulär, doch sie bedeutet, dass alle Tests der
Anforderung 4 erfolgreich gelaufen sind,
d.h. dass die Anforderung 4 erfolgreich
verifiziert werden konnte:

Verifikationsstatus von Anforderung 4: ok

Nachdem im nächsten Schritt die Verifi-
kation aller Anforderungen zusammen-

www.s igs-datacom.de4/2003

objekte
v e r i f i k a t i o n v o n u m l - m o d e l l e n

Verifikationsfehler in Test_4a:
“Das freie Limit des Kunden ist nicht 51, sondern 50”

Test_4a Verifikationsfehler

Hierbei handelt es sich um die Ausgabe
von Test_4a nach Änderung des erwarte-

import java.util.Vector;

public class Kunde {

public Kunde(String s) {

super();

name = s;

limit = 0;

auftraege = new Vector();

}

private String name;

public void setName(String s) { name = s; }

public String getName() { return name; }

private int limit;

public void setLimit(int i) { limit = i; }

public int getLimit() { return limit; }

Vector auftraege;

public void addToAuftraege(Auftrag pAuftrag)

throws MyException {

if (this.getFreiesLimit() < pAuftrag.getWert()) {

throw new MyException(“Freies Limit “

+this.getFreiesLimit()

+” reicht nicht aus”);

}

auftraege.add(pAuftrag);

}

public Auftrag[] getAuftraege() {

return (Auftrag[])auftraege.toArray(new Auftrag[0]);

}

public int getFreiesLimit() {

int freiesLimit = this.getLimit();

Auftrag[] vorhandeneAuftraege =

(Auftrag[])auftraege.toArray(new Auftrag[0]);

for (int i=0; i<vorhandeneAuftraege.length; i++) {

freiesLimit -= vorhandeneAuftraege[i].getWert();

}

return freiesLimit;

}

}

Listing 1: Die Java-Klasse „Kunde.java”
für die UML-Klasse „Kunde”

public class Test_4a extends Test {

Kunde k1;

Auftrag a1, a2, a3;

public void buildSituation() throws MyException {

k1 = new Kunde(“Meier”);

k1.setLimit(500);

a1 = new Auftrag(k1,”a1”,100);

a2 = new Auftrag(k1,”a2”,150);

}

public void performAction() /* Exception wird

nicht weitergereicht */ {

try {

a3 = new Auftrag(k1,”a3”,200);

} catch (MyException e) {

fehlermeldung = e.getMessage();

}

}

public void checkResult() throws MyException {

// Kunde Meier muss 3 Aufträge haben

if (k1.getAuftraege().length != 3) {

reportNonconformity(“Kunde hat nicht

3 Aufträge, sondern “

+k1.getAuftraege().length);

}

// Es darf keine Fehlermeldung aufgetreten sein

if (! fehlermeldung.equals(“”)) {

reportNonconformity(“Falsche Fehlermeldung:\n”

+” Soll: \”\”\n”

+” Ist : \””+fehlermeldung+”\””);

}

// Das freie Limit des Kunden Meier muss 50 sein

if (k1.getFreiesLimit() != 50) {

reportNonconformity(“Das freie Limit des Kunden ist “

+”nicht 50, sondern “+k1.getFreiesLimit());

}

}

public static void main(String[] args) {

Test_4a pb = new Test_4a();

String pbName = pb.getClass().getName();

if (pb.verify()) System.out.println(pbName+” ok”);

else System.err.println(pbName+” Verifikationsfehler”);

}

}

Listing 2: Die Java-Klasse „Test_4a” für
den Test des Normalfalls

import java.util.Vector;

public class Anforderung {

public Anforderung() {

super();

tests = new Vector();

}

Vector tests;

public void addToTests(Test pTest) {

tests.add(pTest);

}

public Test[] getTests() {

return (Test[])tests.toArray(new Test[0]);

}

public boolean verify() {

boolean status = true;

Test[] alleTests = this.getTests();

for (int i=0; i<alleTests.length && status; i++) {

status &= alleTests[i].verify();

}

return status;

}

public static void main(String[] args) {

Anforderung anf4 = new Anforderung();

anf4.addToTests(new Test_4a());

anf4.addToTests(new Test_4b());

anf4.addToTests(new Test_4c());

boolean b1 = anf4.verify();

System.out.println(“Verifikationsstatus von

Anforderung 4: “

+(b1?”ok”:”Fehler”));

}

}

Listing 3: Das Java-Programm
„Anforderung.java” zur Verifikation
kompletter Anforderungen

ten Ergebnisses von 50 auf 51: Das Modell
meldet nach wie vor 50, doch Test_4a
erwartet (fälschlicherweise) 51 und meldet
deshalb einen Verifikationsfehler.

objekte
v e r i f i k a t i o n v o n u m l - m o d e l l e n

38 39 www.objektspektrum.de

gefasst wurde, informiert uns die folgende
knappe Meldung über die Verifikation des
gesamten Modells:

Verifikationsstatus von “Auftrags-System”: ok
(7 Anforderungen, 26 Tests)

Das größte Modell, das auf ähnliche Weise
in einem Kundenprojekt verifiziert wurde,
bestand aus 20 Teilmodellen, die insge-
samt 4.000 Anforderungen und 11.000
Tests besaßen.

Zusammenfassung
Wie man sieht, ist die Verifikation von
UML-Modellen weder Hexenwerk noch
Zauberei: In ihrem Kern beruht sie auf
einfachen Testverfahren, von denen keines
wirklich neu ist.

Die eigentliche Herausforderung in rich-
tigen Projekten liegt deshalb auch weniger

in der hier gezeigten Verifikationstechnik
(sie wird seit 1994 nahezu unverändert
benutzt), als vielmehr in der Organisation,
Strukturierung und Verarbeitung der gro-
ßen Anforderungsmenge, die in der Praxis
entsteht.

Ausblick
Die Integration von UML-Werkzeugen mit
Tools zur Anforderungsaufnahme ermög-
licht es, die Kosten für die Verifikation von
UML-Modellen deutlich zu senken:
Während in früheren Projekten die An-
forderungsaufnahme mit selbst erstellten
und daher nicht ganz billigen Werkzeug
erfolgen musste, steht jetzt durch die
Verbindung von „Rational Rose” (UML-
Modellierung) mit „RequisitePro” (Anfor-
derungsaufnahme) erstmalig Standardsoft-
ware zur Verfügung, die Anforderungen
und UML-Modelle unter einem Dach ver-
walten kann.

Ein Folgeartikel wird deshalb anhand
eines Beispiels zeigen, wie RequisitePro und
Rational Rose zusammen mit geringem
Anpassungsaufwand benutzt werden kön-
nen, um UML-Modelle zu verifizieren. ■

Literatur & Links
[ISO] ISO 9000: „Qualitätsmana-

gementsysteme – Grundlagen und

Begriffe - ISO 9000:2000”, Ref-Nr. DIN

EN ISO 9000:2000-12, Beuth-Verlag,

Berlin (die internationale Norm für

Qualitätsmanagementsysteme wurde im

Jahr 2000 neu gefasst)

