mehr zum thema:
www.sustainablecomputing.org
www.generalobjects.com/begriffe/uml

» verifikation von uml-modellen

von martin résch

MOTIVATION,
GRUNDLAGEN UND VERFAHREN

GrolRere Softwareprojekte werden heute zunehmend auf einem Fundament aus UML
gebaut. Doch wie fest ist dieses Fundament? Wie kdnnen Softwareentwickler sicherstel-
len, dass ihre UML-Modelle richtig sind? Und wie kénnen sie bei spateren Anderungen
das Einschleichen versehentlicher Fehler verhindern? Der Artikel beschreibt die Verifika-
tion von UML-Modellen anhand eines Verfahrens, das sich seit einigen Jahren in der

Praxis bewahrt hat.

Die UML ist inzwischen erwachsen und
eine professionelle Softwareentwicklung
ohne sie ist kaum noch vorstellbar. Als
weltweit standardisierte und von vielen
Tools unterstiitzte Planungssprache fiir
Informationssysteme hat die UML des-
halb einen festen Platz im Entwick-
lungsprozess von modernen Software-
projekten.

So ist es nur natirlich, dass immer mehr
UML-Modelle entstehen und dass sie
einen immer groReren und wichtigeren
Teil der Projektergebnisse bilden. Um so
wichtiger wird daher die Frage nach ihrer
Richtigkeit. Doch was ist hier ,,richtig”?

Salopp gesprochen ist ein Produkt rich-
tig, wenn es macht, was es soll. Dieser ein-
fache Satz zeigt uns schon die ersten drei
Voraussetzungen fur das Feststellen der
Richtigkeit von UML-Modellen:

1) Wir mussen Erwartungen bzw. An-
forderungen das Produkt haben (be-
schreiben).

2) Wir mussen die tatséchlichen Eigen-
schaften des Produkts feststellen kon-
nen (messen).

3) Wir mussen die erwarteten mit den
tatsachlichen Eigenschaften verglei-
chen kdnnen (vergleichen).

Genau dasselbe — nur etwas formaler —
definiert die Norm ISO 9000 (vgl. [ISO])
als den Kern von Qualitét (Kasten 1).

Fur das Qualitdtsmanagement in der
Softwareentwicklung ergeben sich hieraus
einige Denkansto(ie:

1) Erst durch Anforderungen wird Qua-
litat definiert.

2) Erst durch die Verifikation wird Qua-
litdt messbar.

3) Was man nicht messen kann, das kann
man auch nicht managen.

Die Verifikation von UML-Modellen
kénnte aus diesem Grund auch fir das
Qualitatsmanagement in der Softwareent-

Martin Rosch (E-Mail:
martin.roesch@generalobjects.com) ist
Managing Director von General
Objects LTD und Leiter der Object
Academy. Sein besonderes Interesse gilt
dem bewussten Umgang mit menschli-
chem Wissen und dessen gesicherter
Behandlung im Entwicklungsprozess
von Softwaresystemen.

wicklung zu einem interessanten Thema
werden, wobei die Norm den dritten
Punkt als ,,Verifikation” bezeichnet und
eine nicht erfullte Anforderung als
,»Fehler”.

Zusétzlich gibt es noch drei weitere
Begriffe, die oft im Zusammenhang mit
Verifikation genannt werden und die lei-
der geeignet sind, Verwirrung zu stiften,
da ihre umgangssprachliche Bedeutung
nur teilweise mit ihren [1SO-9000-
Definitionen Ubereinstimmt: Fehlerfreiheit
(Kasten 2), Validierung (Kasten 3) und
Kundenzufriedenheit (Kasten 4). Damit
sind die Grundlagen fur die Verifikation
von UML-Modellen schon beisammen.
Mehr ist nicht erforderlich. Fangen wir
also an.

Anwendungsbeispiel

Als Anwendungsbeispiel soll uns eine sehr
einfache Auftragsverwaltung dienen. In
ihr gibt es Kunden mit Name und Kredit-
limit sowie Auftrage mit Beschreibung,

Ist.

Information: Daten mit Bedeutung.

Verifikation: Bestatigung durch Bereitstellung eines objektiven Nachweises, dass festgelegte Anforderungen erftillt worden sind.
Obijektiver Nachweis: Daten, die die Existenz oder Wahrheit von Etwas bestatigen.

Anforderung: Erfordernis oder Erwartung, das oder die festgelegt, Uiblicherweise vorausgesetzt oder verpflichtend ist.
Festgelegte Anforderung: Eine festgelegte Anforderung ist eine Anforderung, die beispielweise in einem Dokument angegeben

Dokument: Information und ihr Trégermedium.

Konformitét: Erfillung einer Anforderung.
Fehler: Nichterfullung einer Anforderung.

Kasten 1: Definitionen aus ISO 9000:2000 zur Verifikation

4

www.objektspektrum.de

verifikation von uml-modellen

Nach den Buchstaben der deutschen Version der ISO 9000 kénnte man ein verifizier-
tes UML-Modell eigentlich getrost und ohne rot zu werden als ,,fehlerfrei”” bezeichnen,
doch damit habe ich in der Vergangenheit schlechte Erfahrungen gemacht: Zu heftig
sind die Emotionen, die an diesem Wortchen héngen. Dabei ist Fehlerfreiheit gerade
bei Software ein hochinteressantes Thema, zu dem es viel zu sagen gabe. Doch das
wirde den Rahmen dieses Artikel sprengen.

Auflerdem sind sowohl die englische als auch die franzdsische Version des
Normentextes deutlich vorsichtiger und nennen eine nicht erfiillte Anforderung ledig-
lich eine ,,nonconformity” bzw. eine ,,non-conformité”.

Doch bevor wir beginnen, mit Wort-Ungetiimen wie ,,Nichtkonformitéat™ (fir Fehler)
oder ,,nicht unkonform” (fur fehlerfrei) zu hantieren, bleibe ich lieber bei ,,verifiziert”

— da weifl? man, was man hat, und es regt sich auch niemand dariber auf.

Kasten 2
Wert und Bezahlt-Status. Nehmen wir fer- 4) Das Kreditlimit eines Kunden be-
ner an, dass die Anforderungssteller fol- schrankt den Umfang seiner unbezahl-
gende Anforderungen haben: ten Auftrdge. Neue Auftrdge missen
in das freie Kreditlimit eines Kunden
1) Das System soll Kunden und Auftrége passen. Dies wird nur bei der Annah-
verwalten kdnnen. Ein Kunde kann 0 me neuer Auftrage geprift.
bis n Auftrége haben und jeder Auftrag 5) Eine Verringerung des Kreditlimits hat
soll zu genau einem Kunden gehdren. keine Auswirkungen auf bestehende
2) Fir jeden Kunden sollen sein Name Auftrége.
sowie sein Kreditlimit gespeichert wer- 6) Das freie Kreditlimit eines Kunden
den. verringert sich bei jeder Erteilung eines
3) FiUr jeden Auftrag sollen folgende Auftrags. Bei der Bezahlung eines Auf-
Angaben gespeichert werden: seine trags erhoht es sich wieder.
Beschreibung, sein Wert und die Tat- 7) Wenn ein Kunde keine bzw. keine

sache, ob er bereits bezahlt ist.

unbezahlten Auftrédge hat, ist sein

Eine Validierung pruft das, was der Volksmund als ,,Qualitat™ bezeichnet.

Sie unterscheidet sich von der Verifikation in zwei wichtigen Punkten: Zum einen
muss ein Produkt fir eine Validierung auch ,,ublicherweise vorausgesetzte”
Anforderungen erfullen, ohne dass diese schriftlich festgelegt sein miissten. Zum ande-
ren muss es auch ,,fir einen beabsichtigten Gebrauch geeignet” sein. Sogar nicht
genannte und daher auch gar nicht
erfullbare Erwartungen reichen
also aus, um bei der Validierung
einen Mangel (Defect) zu konsta-
tieren.

Deshalb warnt die Norm ganz aus-
dricklich (und zum Teil sogar fett
gedruckt) vor dem Begriff
,»Mangel” und damit indirekt auch
vor der Validierung: ,,Die
Unterscheidung zwischen den
Benennungen Mangel und Fehler
ist wegen ihrer rechtlichen
Bedeutung, insbesondere in Fragen
der Produkthaftung, wichtig. Die Benennung ,,Mangel” sollte daher mit &ufRerster
Vorsicht verwendet werden” (O-Ton ISO 9000, Seite 26).

Verifikation

Validierung

Kasten 3

Zuséatzlich zu Verifikation und Vali-
dierung, die beide durch Messungen und
,,objektive Nachweise™ bestatigt wer-
den, fuhrt 1ISO 9000 den Begriff der
Kundenzufriedenheit ein, als ,,Wahrneh-
mung des Kunden zu dem Grad, in dem

Validierung

Verifikation

Kundenzufriedenheit

die Anforderungen des Kunden erfullt
sind”. Sie wird rein subjektiv ermittelt.
Deshalb erlautert die ISO 9000 in einer
Anmerkung zu dieser Definition:
,,Selbst, wenn Kundenanforderungen
mit dem Kunden vereinbart und erftllt
worden sind, bedeutet dies nicht not-
wendigerweise, dass die Kundenzufrie-
denheit damit sichergestellt ist” ([ISO],
S. 19).

Umgekehrt kann ein Produkt auch dann
hohe Werte bei der Kundenzufriedenheit
erreichen, wenn es weder verifiziert
noch validiert ist. Viele populére
Programme belegen dies.

Kasten 4

freies Kreditlimit identisch mit seinem
eingetragenen Kreditlimit.

Hierzu wurde das in Abbildung 1 gezeigte
UML-Modell erstellt, mit dem wir jetzt
eine Beschreibung der spéteren Software
vorliegen haben. Doch wie kénnen wir
messen, ob es alle gestellten Anfor-
derungen erfullt? Hier kommt uns die ISO
9000 zur Hilfe, denn sie verlangt, dass die
Erfullung der Anforderungen ,,objektiv
nachgewiesen” werden muss, z.B. durch
Tests. Dies geht natiirlich am besten, wenn
man sich von Vornherein darauf einigt,
wie die Erfullung der Anforderungen
getestet werden soll. Das erspart langwie-
rige Missverstandnis-Diskussionen im

Nachhinein.
>

» verifikation von uml-modellen

Kunde

Name
Kreditlimit

Auftrag

Einen Auftrag zuordnen()
Freies Kreditiimitermittel ni

Kreditlimit des Kunden.

Das Ergebnis ist das freie Kreditlimit.

Einen Auftrag zuordnen: Ein Auftrag kann einem Kunden zugeordnet werden, wenn der Auftragswert nicht groer ist als das freie

Freies Kreditlimit ermitteln: Vom Kreditlimit des Kunden werden die Werte aller seiner bislang unbezahlten Auftrage subtrahiert.

Beschreibung
Wert
Bezahlt-Status

Abb. 1:

In dem Verfahren, das wir bisher zur
Verifikation von UML-Modellen benutzt
haben?), hat jede Anforderung ihre eige-
nen Tests (meist zwischen drei und flnf);
sie gilt als erfullt, wenn sie alle ihre verein-
barten Tests bestanden hat.

Diese direkte und unmittelbare Zuord-
nung von Anforderungen und Tests geht
Uber das hinaus, was ISO 9000 fordert,
doch die Erfahrung hat gezeigt, dass sie
die Handhabbarkeit der Anforderungs-
sammlung deutlich verbessert — besonders
dann, wenn Anforderungen geandert wer-
den missen. Dann helfen die zu einer
Anforderung gehdrenden Tests, sie schnel-
ler und sicherer zu verstehen. Und wenn
eine Anforderung geéndert oder entfernt
werden muss, grenzt diese Zuordnung die
Menge der potenziell betroffenen Tests
sehr wirksam ein.

Fur die folgenden Beispiele wahlen wir
die Anforderung 4, die in Kasten 5 zusam-
men mit ihren Tests gezeigt wird.

In Trainings vermitteln wir die Verifi-
kation von Mini-UML-Modellen durch
Rollenspiele: Beim Nachspielen von Ob-
jekt-Interaktionen wie den in Kasten 5
genannten Tests 4a bis 4c lernen Men-
schen sehr schnell, warum und wie die
Verifikation funktioniert. Doch fur den
Praxis-Einsatz ist dieses nicht-automati-
sierte Verfahren natirlich zu langsam und
daher letztlich nicht bezahlbar.

4L

Das Kreditlimit eines Kunden be-
schrankt den Umfang seiner unbezahl-
ten Auftrdge. Neue Auftrége missen in
das freie Kreditlimit eines Kunden pas-
sen. Dies wird nur bei der Annahme
neuer Auftrage gepruft.

m a. (Normal): Kunde Meier hat ein
Kreditlimit von 500 Euro und zwei
offene Auftrége al und a2 von 100
und 150 Euro. Ein dritter Auftrag
von 200 Euro kann noch angenom-
men werden. Danach hat Kunde
Meier drei Auftrége und einen freien
Kreditrahmen von 50 Euro.

m b. (Grenzfall positiv): Kunde Meier
hat ein Kreditlimit von 450 Euro
und zwei offene Auftrage al und a2
von 100 und 150 Euro. Ein dritter
Auftrag von 200 Euro kann (gerade
noch) angenommen werden. Danach
hat Kunde Meier drei Auftrdge und
einen freien Kreditrahmen von 0
Euro.

m . (Grenzfall negativ): Kunde Meier
hat ein Kreditlimit von 449 Euro
und zwei offene Auftrége al und a2
von 100 und 150 Euro. Ein dritter
Auftrag von 200 Euro kann nicht
mehr angenommen werden. Dies
wird durch eine Fehlermeldung sig-

nalisiert. Danach hat Kunde Meier

zwei Auftrage und einen freien

Kreditrahmen von 199 Euro.

Kasten 5

Praxistauglich wird die Verifikation von
UML-Modellen deshalb erst durch ihre
vollstandige Automatisierung, wenn nach
jeder Anderung an den Anforderungen
oder am Modell eine erneute und zuver-
lassige Verifikationsaussage schon nach
wenigen Minuten vorliegen kann.

Fur die Automatisierung bendétigen wir
sowohl das UML-Modell als auch die
Tests als ausfiihrbaren Programmcode.
Fur die Beispiele in diesem Artikel wurde
als Programmiersprache Java gewahit?).
Eine einfache Codierung fir das Modell
zeigt der Codeausschnitt in Listing 1.

Wie man sieht, wurden die Angaben des
UML-Modells gradlinig in Java umgesetzt.
Dieser Vorgang kann z.B. mit Hilfe der
Skriptsprachen der gangigen UML-Tools
leicht automatisiert werden. Als néchstes
mussen die Tests codiert werden. Das
Java-Programm in Listing 2 zeigt den
Code fur den Normalfall-Test?). Wenn
man das Programm laufen lasst, erscheint
nur eine kleine unscheinbare Anzeige:

Test_4a ok

Interessanter werden die Ausgaben erst,
wenn wir absichtlich (oder unfreiwillig)
ins Modell oder in die Tests Fehler einbau-
en. Dann bekommen wir auch Ausgaben
wie z. B. die folgende zu sehen:

www.objektspektrum.de

4/2003

verifikation von uml-modellen

import java.util.Vector;

public class Kunde {

public Kunde(String s) {
super();
name = s;
limit = 0;

auftraege = new Vector();

private String name;
public void setName(String s) { name =s; }

public String getName() { return name; }

private int limit;
public void setLimit(int i) { limit = i; }
public int getLimit() { return limit; }

Vector auftraege;

public void addToAuftraege(Auftrag pAuftrag)
throws MyException {

if (this.getFreiesLimit() < pAuftrag.getWert()) {
throw new MyException(“Freies Limit “
+this.getFreiesLimit()
+” reicht nicht aus”);
}
auftraege.add(pAuftrag);
}

public Auftrag[] getAuftraege() {
return (Auftrag[])auftraege.toArray(new Auftrag[0]);
}

public int getFreiesLimit() {
int freiesLimit = this.getLimit();
Auftrag[] vorhandeneAuftraege =
(Auftrag[])auftraege.toArray(new Auftrag[0]);
for (int i=0; i<vorhandeneAuftraege.length; i++) {
freiesLimit -= vorhandeneAuftraege[i].getWert();

}

return freiesLimit;

Listing 1: Die Java-Klasse ,,Kunde.java”
fur die UML-Klasse ,,Kunde”

Verifikationsfehler in Test_4a:
“Das freie Limit des Kunden ist nicht 51, sondern 50"
Test_4a Verifikationsfehler

Hierbei handelt es sich um die Ausgabe
von Test_4a nach Anderung des erwarte-

public class Test_4a extends Test {

Kunde k1;
Auftrag al, a2, a3;

public void buildSituation() throws MyException {
k1 = new Kunde(“Meier”);
k1.setLimit(500);
al = new Auftrag(kl,7a1”,100);
a2 = new Auftrag(kl,"a2”,150);

public void performAction() /* Exception wird
nicht weitergereicht */ {
try {
a3 = new Auftrag(kl,"a3",200);
} catch (MyException €) {
fehlermeldung = e.getMessage();
}
}

public void checkResult() throws MyException {
// Kunde Meier muss 3 Auftrdge haben
if (k1.getAuftraege().length !=3) {
reportNonconformity(“Kunde hat nicht
3 Auftrége, sondern “
+k1.getAuftraege().length);
}
// Es darf keine Fehlermeldung aufgetreten sein
if (! fehlermeldung.equals(*”)) {
reportNonconformity(“Falsche Fehlermeldung:\n”
+” Soll: \"\"\n”
+7 Ist : \""+fehlermeldung+”\"”);
}
// Das freie Limit des Kunden Meier muss 50 sein
if (kl.getFreiesLimit() '=50) {
reportNonconformity(“Das freie Limit des Kunden ist

+"nicht 50, sondern “+k1.getFreiesLimit());

public static void main(String[] args) {
Test_4a pb = new Test_4a();
String pbName = pb.getClass().getName();
if (ph.verify()) System.out.printin(pbName+" ok”);
else System.err.printin(pbName+" Verifikationsfehler”);
}
}

Listing 2: Die Java-Klasse ,,Test_4a” flr
den Test des Normalfalls

ten Ergebnisses von 50 auf 51: Das Modell
meldet nach wie vor 50, doch Test 4a
erwartet (félschlicherweise) 51 und meldet
deshalb einen Verifikationsfehler.

import java.util.Vector;

public class Anforderung {

public Anforderung() {
super();
tests = new Vector();

}

Vector tests;

public void addToTests(Test pTest) {
tests.add(pTest);

}

public Test[] getTests() {
return (Test[])tests.toArray(new Test[0]);

public boolean verify() {
boolean status = true;
Test[] alleTests = this.getTests();
for (int i=0; i<alleTests.length && status; i++) {
status &= alleTests[i].verify();
}

return status;

public static void main(String[] args) {
Anforderung anf4 = new Anforderung();
anf4.addToTests(new Test_4a());
anf4.addToTests(new Test_4b());
anf4.addToTests(new Test_4c());
boolean bl = anf4.verify();

System.out.printin(“Verifikationsstatus von
Anforderung 4: “
+(b1?”0k”:"Fehler”));

Listing 3: Das Java-Programm
,»Anforderung.java” zur Verifikation
kompletter Anforderungen

Als né&chstes verknupfen wir die An-
forderung 4 mit ihren Tests, damit diese
nicht mehr einzeln gestartet werden mus-
sen (siehe Listing 3). Die Ausgabe des
Programms ist auch wieder wenig spekta-
kulér, doch sie bedeutet, dass alle Tests der
Anforderung 4 erfolgreich gelaufen sind,
d.h. dass die Anforderung 4 erfolgreich
verifiziert werden konnte:

Verifikationsstatus von Anforderung 4: ok

Nachdem im néchsten Schritt die Verifi-
kation aller Anforderungen zusammen-»

www.sigs-datacom.de

gefasst wurde, informiert uns die folgende
knappe Meldung Uber die Verifikation des
gesamten Modells:

Verifikationsstatus von “Auftrags-System”: ok
(7 Anforderungen, 26 Tests)

Das groRte Modell, das auf &hnliche Weise
in einem Kundenprojekt verifiziert wurde,
bestand aus 20 Teilmodellen, die insge-
samt 4.000 Anforderungen und 11.000
Tests besafien.

Wie man sieht, ist die Verifikation von
UML-Modellen weder Hexenwerk noch
Zauberei: In ihrem Kern beruht sie auf
einfachen Testverfahren, von denen keines
wirklich neu ist.

Die eigentliche Herausforderung in rich-
tigen Projekten liegt deshalb auch weniger

4L

» verifikation von uml-modellen

in der hier gezeigten Verifikationstechnik
(sie wird seit 1994 nahezu unverandert
benutzt), als vielmehr in der Organisation,
Strukturierung und Verarbeitung der gro-
Ren Anforderungsmenge, die in der Praxis
entsteht.

Die Integration von UML-Werkzeugen mit
Tools zur Anforderungsaufnahme ermog-
licht es, die Kosten fiir die Verifikation von
UML-Modellen deutlich zu senken:
Wahrend in friheren Projekten die An-
forderungsaufnahme mit selbst erstellten
und daher nicht ganz billigen Werkzeug
erfolgen musste, steht jetzt durch die
Verbindung von ,,Rational Rose” (UML-
Modellierung) mit ,,RequisitePro” (Anfor-
derungsaufnahme) erstmalig Standardsoft-
ware zur Verfugung, die Anforderungen
und UML-Modelle unter einem Dach ver-
walten kann.

Ein Folgeartikel wird deshalb anhand
eines Beispiels zeigen, wie RequisitePro und
Rational Rose zusammen mit geringem
Anpassungsaufwand benutzt werden kon-
nen, um UML-Modelle zu verifizieren. =

ISO 9000:
gementsysteme - Grundlagen und
Begriffe - 1ISO 9000:2000”, Ref-Nr. DIN
EN ISO 9000:2000-12, Beuth-Verlag,
Berlin (die internationale Norm fur

,»,Qualitatsmana-

Qualitatsmanagementsysteme wurde im
Jahr 2000 neu gefasst)

www.objektspektrum.de

